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Some Issues on the RF System in the
3 GeV Fermilab Pre-Booster

K.Y. Ng

Fermi National Accelerator Laboratory,1 P.O. Box 500, Batavia, IL 60510

Abstract. Some issues are presented on the rf system in the future Fermilab pre-
booster, which accelerates 4 bunches each containing 0.25 × 1014 protons from 1 to
3 GeV kinetic energy. The problem of beam loading is discussed. The proposal of
having a non-tunable fixed-frequency rf system is investigated. Robinson’s criteria for
phase stability are checked and possible Robinson instability growth is computed.

I INTRODUCTION

The proposed future Fermilab pre-booster has a circumference of 158.07 m. It
accelerates 4 bunches each containing 0.25× 1014 protons from kinetic energy 1 to
3 GeV [1]. Because of the high intensity of the beam, the problems of space charge
and beam loading must be addressed. A preliminary rf system has been proposed
by Griffin [2]. Here, we wish to examine the issues of beam loading and Robinson
instabilities. We first present a possible resonant ramp curve with space-charge dis-
tortion of the rf waveform compensated. Then the rf system which will eliminate
most of the transient beam loading is reviewed. We next consider the possibility of
non-tunable rf cavities and the possible Robinson instabilities that follow. We find
that the Robinson growth in synchrotron amplitude is small and the high-intensity
Robinson phase-stability criterion is well satisfied.

II THE RAMP CURVE

Because of the high beam intensity, the longitudinal space-charge impedance per
harmonic is Z‖/n|spch ∼ −j100 Ω. But the beam pipe discontinuity will contribute
only about Z‖/n|ind ∼ j20 Ω of inductive impedance. The space-charge force will
be a large fraction of the rf-cavity gap voltage that intends to focus the bunch.
A proposal is to insert ferrite rings into the vacuum chamber to counteract this
space-charge force [3]. An experiment of ferrite insertion was performed at the
Los Alamos Proton Storage Ring and the result has been promising [4]. Here we
assume such an insertion will over-compensate all the space-charge force leaving
behind about Z‖/n|ind ≈ j25 Ω of inductive impedance. It may be a good idea
to over-compensate the space charge, because an inductive impedance will help
bunching so that the required rf voltage needed will be smaller.

1) Operated by the Universities Research Association, Inc., under contract with the U.S. Depart-
ment of Energy.
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FIGURE 1. A typical ramp curve for the future Fermilab pre-booster.

The acceleration from kinetic energy 1 to 3 GeV in 4 buckets at a repetition
rate of 15 Hz is to be performed by resonant ramping. In order to reduce the
maximum rf voltage required, about 3.75% of second harmonic is added. A typical
ramp curve is shown in Fig. 1, which will be used as a reference for the analysis
below. This fraction of second harmonic was chosen because, in the present choice
of initial and final bucket areas and bunch areas, raising this fraction beyond 3.75%
will only flatten the rf gap voltage in the ramp but will not decrease the maximum
significantly.

III THE RF SYSTEM

According to the ramp curve in Fig. 1, the peak voltage of the rf system is Vrf ≈
185 kV. Griffin proposed 10 cavities [2], each delivering a maximum of 18.5 kV.
Each cavity contains 30 cm of ferrite rings with inner and outer radii 20 and 35 cm,
respectively. The ferrite has a relative magnetic permeability of µr = 21. The
inductance and capacitance of the cavity are L ∼ 0.61 µH and C ∼ 820 pF.
Assuming an average ferrite loss of 134 kW/m3, the dissipation in the ferrite and
wall of the cavity will be P ∼ 15 kW. The mean energy stored is W ∼ 0.15 J.
Therefore each cavity has a quality factor Q ∼ 459 and a shunt impedance Rs ∼
12.5 kΩ. One such cavity is shown in Fig. 2.

FIGURE 2. A ferrite-loaded cavity with a dielectric gap in the beam pipe. Protons move to
the right.
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Because each bunch contains q = 4.005 µC, the transient beam loading is large.
For the passage of one bunch, 4.005 µC of negative charge will be left at upstream
end of the cavity gap. Since another negative image current will start from the
downstream end of the cavity gap following the bunch, an equal amount of positive
charge will accumulate there, as illustrated in Fig. 2. Thus a voltage Vt0 will be
created at the gap opposing the beam current. For a short bunch, this transient
beam loading voltage can have a maximum of

Vt0 ∼
q

C
= 5.0 kV , (3.1)

where C = 820 pF is the gap capacitance. We note from Fig. 1 that the accelerating
gap voltages at both ends of the ramp are only about or less than 10 kV in each
cavity. If the wakes due to the bunches ahead do not die out, we need to add up
the contribution due to all previous bunch passages. Assuming a loaded quality
factor of Q

L
= 45, we find from Appendix C that the accumulated beam-loading

voltage can reach a magnitude of |Vt| = 37 kV when the detuning angle is zero.

Griffin suggested to use a feed-forward system [2], which will deliver via a tetrode
the same amount of negative charge to the downstream end of the gap so as to cancel
the transient beam loading. This is illustrated in Fig. 3.

A feed-forward system is not perfect and we assume that the cancellation is 85 %.
For a δ-function beam, the component at the fundamental rf frequency is 56.0 A.
Therefore, the remaining image current across the gap is iim = 8.4 A. To counter
this remaining 15% of beam loading in the steady state, the cavity must be detuned
by the angle (see Appendix A)

ψ = tan−1
(
iim cosϕs

i0

)
, (3.2)

where ϕs is the synchronous angle and i0 = Vrf/Rs is the cavity current in phase
with the cavity gap voltage Vrf . For high quality factor of Q = 459 which is accom-
panied by a large shunt impedance, the detuning angle will be large. Corresponding

FIGURE 3. Transient beam-loading power tetrode connected directly to a rf cavity gap.
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FIGURE 4. Detuning angle for the high Q = 459 and low QL = 45 situations.

to the ramp curve of Fig. 1, the detuning angle is plotted as dashes in Fig. 4 along
with the synchronous angle and maximum cavity gap voltage. We see that the
detuning angle is between 80◦ and 86◦, which is too large. If a large driving tube
is installed with anode (or cathode follower) dissipation at ∼ 140 kW, the quality
factor will be reduced to the loaded value of Q

L
∼ 45 and the shunt impedance to

Rs ∼ 1.22 kΩ. The detuning angle then reduces to ψ ∼ 29◦ at the center of the
ramp and to ∼ 40◦ or ∼ 56◦ at either end. This angle is also plotted in Fig. 4 as a
dot-dashed curve for comparison. Then, this rf system becomes workable.

IV FIXED-FREQUENCY RF CAVITY

Now we want to raise the question whether it is possible to have a fixed resonant
frequency for the cavity. A fixed-frequency cavity can be a very much simpler device
because it may not need any biasing current at all. Thus the amount of cooling
can be very much reduced and even unnecessary. It appears that the resonant
frequency of the cavity should be chosen as the rf frequency at the end of the
ramp, or f

R
= 7.37 MHz so that the whole ramp will be immune to Robinson’s

phase-oscillation instability [5]. However, the detuning will be large. For example,
at the beginning of the ramp where frf = 6.39 MHz, the detuning angle becomes
ψ = 85.2◦. Since the beam-loading voltage Vim is small, the generator voltage
phasor Ṽg will be very close to the gap voltage phasor Ṽrf . As a result, the angle θ

between the gap voltage Ṽrf and the generator current phasor ĩg will be close to the
detuning angle, as demonstrated in Fig. 5. For example, Fig. 6 shows that, at the
beginning of the ramp, the detuning angle is ψ = 85.2◦. Although the total power
delivered by the generator

1
2
ĩg · Ṽrf =

V 2
rf

2Rs
+ 1

2
iimVrf cosϕs (4.1)

is independent of θ, the energy capacity of the driving tube has to be very large.
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FIGURE 5. For a fixed cavity resonant frequency, the detuning angle ψ is fixed at each ramp
time. When beam-loading is small, the angle θ between the gap voltage Ṽrf and the generator
current ĩg will be close to ψ and will be large.

Another alternative is to choose the resonant frequency of the cavity to be the rf
frequency near the middle of the ramp. Then the detuning angle ψ and therefore
the angle θ between Ṽrf and ĩg will be much smaller at the middle of the ramp when
the gap voltage is large. Although θ will remain large at both ends of the ramp,
however, this is not so important because the gap voltages are relatively smaller
there. Figure 7 shows the scenario of setting the cavity resonating frequency f

R

equal to frf at the ramp time of 13.33 ms.

FIGURE 6. When the cavity resonant frequency is chosen as the rf frequency at the end of the
ramp, both the detuning angle as well as the angle between the cavity gap voltage Ṽrf and the
generator current Ĩg are large.
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There is a price to pay for this choice of f
R
; namely, there will be Robinson phase

instability for the second half of the ramp when the rf frequency is larger than f
R
.

The instability comes from the fact that, below transition, the particles with larger
energy have higher revolution frequency and see a smaller real impedance of the
cavity, thus losing less energy than particles with smaller energy. Therefore, the
synchrotron amplitude will grow. In other words, the upper synchrotron sideband
of the image current interacts with a smaller real impedance of the cavity resonant
peak than the lower synchrotron sideband. However, since the loaded quality factor
Q
L

is not small, the difference in real impedance at the two sidebands is only
significant when the rf frequency is very close to the cavity resonant frequency.
Thus, we expect the instability will last for only a very short time during the
second half of the ramp. The growth rate of the synchrotron oscillation amplitude
has been computed and is equal to [6]

1

τ
= − iimβωs(R+−R−)

2Vrf cosϕs
, (4.2)

where

R+ −R− = Re
[
Zcav(ωrf +ωs)− Zcav(ωrf−ωs)

]
, (4.3)

iim is the image current, β is the velocity with respect to light velocity, ωs/(2π) is
the synchrotron frequency, and Zcav is the longitudinal impedance of the cavity. We
see from Fig. 7 that the growth occurs for only a few ms and the growth time is at
least ∼ 25 ms. The total integrated growth increment from ramp time 13.33 ms is
∆G =

∫
τ−1dt = 0.131 and the total growth is e∆G−1 = 14.0% which is acceptable.

FIGURE 7. When the cavity resonant frequency is chosen as the rf frequency at the middle of
the ramp at 13.33 ms, although the detuning angle as well as the angle between the cavity gap
voltage Ṽrf and the generator current Ĩg are large at both ends of the ramp, they are relatively
smaller at the middle of the ramp where the gap voltage is large.
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We also want to see whether Robinson’s criterion for stable phase oscillation
is satisfied for this rf consideration. For the second half of the ramp where the
detuning angle ψ < 0, the phase is stable because we are below transition and the
synchronous angle ϕs is between 0 and 1

2
π (see Appendix B). For the first half of

the ramp where ψ > 0, the sufficient condition for stability is the high-intensity
Robinson’s criterion:

iim
i0

<
cosϕs

sinψ cosψ
. (4.4)

Figure 8 plots both sides of the criterion and shows that the criterion is well satis-
fied.

FIGURE 8. Plot showing the high-intensity Robinson’s phase-stability criterion is satisfied.

V CONCLUSION

We started from a rf system designed by Griffin for the future Fermilab pre-
booster with space charge slightly over-compensated and transient beam loading
85% compensated. Based on a resonant ramp curve with 3.75% second harmonic,
we studied the possibility of having fixed-frequency non-tunable rf cavities. In
order to reduce the phase angle between the rf voltage and the generator current,
we proposed to set the resonant frequency of the cavity equal to the rf frequency at
the middle of the ramp. Robinson phase instability would result in the second half
of the ramp. The total integrated growth in synchrotron oscillation amplitude was
found to be only ∼ 14% which is small enough to be acceptable. We also checked
that the whole ramp satisfies Robinson’s high-intensity criterion for stable phase
oscillation.
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APPENDIX

In this appendix, we try to gather together the derivations of some of the
formulas used in the paper. Most of them are well known. They are included here
just for completeness.

A RF DETUNING

The rf cavity has a loaded shunt impedance Rs, a loaded quality factor Q
L
, and

resonates at frequency f
R

= ω
R
/(2π). Corresponding to a beam particle revolving

with frequency f0 = ω0/(2π), the rf frequency is frf = ωrf/(2π) = hω0, where h is
the rf harmonic. The impedance of the cavity seen by the particle at frf can be
written approximately as

Zcav =
Rs

1− jQ
L

(
ω
R

ωrf
−ωrf

ω
R

) ≈ Rs cosψ ejψ , (A.1)

where ψ is the rf tuning angle, which is defined as

tanψ = 2Q
L

ω
R
−ωrf

ω
R

. (A.2)

This detuning is necessary because (1) we want the load to appear real to the
generator (the generator current ig in phase with the cavity gap voltage Vrf) so
that there will not be any power reflection to the generator, and (2) both the
generator voltage Vg and the beam-loading voltage Vim contribute to the cavity
gap voltage. This is illustrated in the phasor diagram in Fig. 9, where the tilde
represents a phasor rotating counter-clockwise with angular frequency ωrf . Here, we
assume most of the transient beam-loading has been cancelled; therefore, the image
current phasor ĩim has a magnitude much smaller than that of the beam current
phasor ĩb. According to Eq. (A.1), we see from Fig. 9 that both the beam-loading
voltage phasor Ṽim and the generator voltage phasor Ṽg are at a phase ψ ahead of

their respective current phasors ĩim and ĩg. Since these two voltage phasors add up

to give the gap voltage phasor Ṽrf which has a synchronous angle ϕs, we must have
after dividing by Rs cosφ,

ig sinψ = iim sin(π
2
− ϕs + ψ) . (A.3)

Resolving the current contributions along ĩg, we have

ig = i0 + iim sinϕs , (A.4)

where i0 = Vrf/Rs is the total current in phase with the cavity gap voltage. Elimi-
nating ig, we arrive at

tanψ =
im cosϕs

i0
. (A.5)



9

-�
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

C
C
C
C
C
C
C
C
C
C
CW

�
�

�
�

�
�

��=

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ~
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FIGURE 9. Phasor plot showing the vector addition of the generator voltage phasor Ṽg and
the beam-loading voltage phasor Ṽim to give the gap voltage phasor Ṽrf in a rf cavity. Note the
detuning angle ψ which put the gap current phasor ĩg in phase with the gap voltage phasor.

B ROBINSON’S STABILITY CRITERIA

Now let us study the conditions for phase stability. Suppose that the beam par-
ticle has a slightly larger energy than the synchronous particle. After a revolution
or h rf periods, ĩb in Fig. 9 will be ahead of the x-axis by a small angle ε > 0 if
it is below transition. Then the accelerating voltage it sees will be Vrf sin(ϕs−ε)
instead of Vrf sinϕs, or an extra decelerating voltage of εVrf cosϕs, and it receives
less energy from the cavity than the synchronous particle. The motion is therefore
stable. This is Robinson’s criterion for establishing stable phase oscillation when
beam loading can be neglected [5]. In other words, one requires{

0 < ϕs <
π
2

below transition,
π
2
< ϕs < π above transition.

(B.1)

When beam loading is included, the gap voltage phasor Ṽrf will be modified
also, because the image current phasor ĩim and hence the beam-loading voltage
phasor Ṽim also advance by the small angle ε after h rf periods. The extra beam-
loading voltage phasor is εiimRs cosψ ej(ψ+3π/2). If ψ < 0, this phasor will point into
the 3rd quadrant and decelerate the particle in concert with εVrf cosϕs, causing no
instability. On the other hand, if ψ > 0, this phasor will point into the 4th quadrant
and accelerate the particle instead. To be stable, the extra accelerating voltage on
the beam must be less than the amount of decelerating voltage εVrf cosϕs, or

iim
i0

<
cosϕs

sinψ cosψ

{
ψ > 0 below transition,

ψ < 0 above transition,
(B.2)
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which is called Robinson’s high-intensity criterion for phase stability. Satisfying
this criterion just enables stable oscillating like sitting inside a stable potential well
and there will not be any damping. Violating this criterion the particle will be in
an unstable potential well so that phase oscillation will not be possible.

C TRANSIENT BEAM LOADING INCLUDING
PREVIOUS PASSAGES

We follow closely the approach by Boussard [7]. Let the bunch spacing be hb
rf buckets or Tb in time. The cavity time constant or filling time is Tf = 2Q

L
/ω

R

and the e-folding voltage decay decrement between two successive bunch passages
is δ

L
= Tb/Tf . During this time period, the phase of the rf fields changes by

Ψ = ω
R
Tb−2πhb, which can also be written in terms of the detuning angle,

Ψ = (ω
R
− ωrf)Tb = δ

L
tanψ , (C.1)

where Eq. (A.2) has been used. The transient beam-loading voltage left by the
first passage of a short bunch carrying charge q is Vt0 = q/C. The total beam-
loading voltage Vt seen by a short bunch is obtained by adding up vectorially the
beam-loading voltages for all previous bunch passages. The result is

Vt = 1
2
Vt0 + Vt0(e−δLejΨ + e−2δ

Lej2Ψ + · · · ) , (C.2)

where the 1
2

in the first term on the right side is the result of Wilson’s fundamental
theorem of beam-loading, which states that a particle sees only one-half of its own
induced voltage. It is worth pointing out that these voltages are not phasors or
components at the rf frequency. They are vectors that contain components of all
frequencies. The summation can be performed exactly giving the result

Vt =
q

C

[
F1(δL, ψ) + jF2(δL, ψ)

]
, (C.3)

with

F1 =
1− e−δL

2D
, F2 =

e−δL sin(δL tanψ)

D
,

D = 1− 2e−δL cos(δL tanψ) + e−2δ
L . (C.4)

Notice that δ
L
≈ πhb/QL

, which is 0.0698 for hb = 1 and Q
L

= 45. When the
detuning angle ψ = 0, |Vt| ≈ Vt0/(2δL). The functions F1 and F2 are computed at
some other values of ψ, which are listed in Table 1 and plotted in Fig. 10.

We see that the total transient beam loading Vt falls rapidly as the detuning
angle ψ increases. It vanishes approximately ∼ 88.7◦ and oscillates rapidly after
that. However, the choice of a large ψ is not a method to eliminate beam loading,
because the steady-state beam loading will not be reduced.
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TABLE 1. F1 and F2 for some values of the detuning
angle ψ.

ψ Ψ = δ
L

tanψ F1 F2

0◦ 0◦ ∼ 1
2δ

L

0

84.9◦ 45◦ 0.061 1.197

87.5◦ 90◦ ∼ δL
4

∼ 1
2

88.7◦ 180◦ ∼ δ
L

8
0

FIGURE 10. Plot of transient beam-loading voltage including all previous bunch passages,
q

C
(F1 + jF2), versus detuning angle ψ.
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